Преобразование выражений. Степень и ее свойства
- \(\displaystyle\frac{14}{7}+\displaystyle\frac{28}{14}-\displaystyle\frac{27}{9}+\displaystyle\frac{18}{3}\)
- \(\displaystyle\frac{4+2}{8+2}\)
- \(\displaystyle\frac{-15}{-25}\)
- \(\displaystyle\frac{2\cdot 4\cdot 8}{4\cdot 16}\)
- \(\displaystyle\frac{1\cdot 10 \cdot 100}{2\cdot 20\cdot 30}\)
- \(\displaystyle\frac{(-3)\cdot 14}{21\cdot (-9)}\)
- \(\displaystyle\frac{2+4+6}{4+6+8}\)
- \(\displaystyle\frac{8bc}{24b^2c}\)
- \(\displaystyle\frac{2^{100}\cdot 2^{200}}{2^{50}\cdot 2^{190}}\)
- \(\displaystyle\frac{2014^{2015}\cdot 2014^{-2013}}{2014^{-2}\cdot 2014^0}\)
- \(-\displaystyle\frac{6}{4}+\displaystyle\frac{15}{10}\)
- \(2^2\cdot(2^3)^5\)
- \(\displaystyle\frac{2^2\cdot 2^{-3}}{(2^{-2})^2\cdot 2^4}\)
- \(2^1\cdot 2^2\cdot 2^3\cdot 2^4\)
- \(\displaystyle\frac{7^2\cdot (7^{-2})^{-4}}{(7^2)^3\cdot 7^{-13}}\)
- \(\displaystyle\frac{8^2}{4^3}\)
- \(\displaystyle\frac{a^5b^3}{a^3\cdot b^5}\)
- \(\displaystyle\frac{7a^2b^3}{14(a^3)^2b^{-3}}\)
- \(\displaystyle\frac{a\cdot b^2 \cdot c^3}{a^3\cdot b^2 \cdot c}\)
- \(\displaystyle\frac{a}{b}:\frac{a^2}{b^3}\)
- \(\displaystyle\frac{(3^2)^4\cdot 2^4\cdot 6^{-3}}{3^{-3}\cdot (3^4)^2\cdot 2^{-5}}\)
- \(\displaystyle(\frac{3}{5})^4\cdot (\frac{5}{3})^3\)
- \(\displaystyle(\frac{9}{5})^4 : (\frac{25}{3})^3\)
- \(\displaystyle \frac{(3^3)^2\cdot 2^{-4}\cdot 6^{-2}}{4^{-3}\cdot (9^5)^2\cdot 4^{-2}}\)
- \(\displaystyle\frac{4\cdot 6^5}{16\cdot 9^7}\)
- \(\displaystyle\frac{2\cdot 25\cdot 100}{4\cdot 200\cdot 75}\)
- \(\displaystyle\frac{14^4\cdot 6^2}{21^4\cdot 48^2}\)
- \(\displaystyle (\frac{4}{18})^5: (\frac{6}{36})^7\)
- \(\displaystyle\frac{(a^{-4})^5(ab^2)^4}{(a^6b^{-2})^3a^{-4}}\)
1) 7
2) 3/5
3) 3/5
4) 1
5) 5/6
6) 2/9
7) 2/3
8) 1/(3b)
9) 2^(60)
10) 2014^4
11) 0
12) 2^(17)
13) 1/2
14) 2^(10)
15) 7^(17)
16) 1
17) a^2/b^2
18) b^6/(2a^4)
19) c^2/a^2
20) b^2/a
21) 64
22) 3/5
23) 3^(11)/5^(10)
24) 2^4/3^(16)
25) 2^3/3^9
26) 1/12
27) 1/324
28) 2^12/3^3
29) b^14/a^30