Неравенства с модулем II
- \(|x-4|<0,1\)
- \(|x-4|>0,2\)
- \(|x+3|<1\)
- \(|x+3|>1\)
- \(|x+2|<0,5\)
- \(|x+2|>0,5\)
- \(|2x-5|<1\)
- \(|2x-5|>1\)
- \(|x-1|<2x-5\)
- \(3x>2-|3-x|\)
- \(5x-7<|x+2|\)
- \(|5x-3|>6x-2\)
- \(|x-3|>2x\)
- \(|4x+2|>5x+3\)
- \(|2x-2|>3x+2\)
- \(|x^2+x-20|\leq x^2+x-20\)
- \(3x^2-|10x-3|>0\)
- \(|2x^2-x-10|>|x^2-8x-22|\)
- \(\displaystyle|\frac{3-2x}{1+x}|<2\)
- \(\displaystyle|\frac{2x+3}{5x-2}|<3\)
- \(-\displaystyle\frac{2}{|x|+1}\geq |x|-2\)
- \(\displaystyle\frac{5}{|3-x|+4}>|3-x|\)
- \(|2x+1|+|3x+2|\leq 5x+3\)
- \(|2-5x|+|x+1|\geq x+3\)
- \(|x-1|\leq |2x-3|-|x-2|\)
- \(|5x-1|-|4x+2|\leq |x-3|\)
- \(|2x+5|+|3x-7|>|4x+1|\)
- \(x^2+|x-1|\leq 5\)
- \(|x+2|+3-x^2\leq 0\)
- \(|x^2-3|+x^2+x<7\)
- \(|2x-|x-2||<3\)
- \(||3x+1|+x+1|\geq 2\)
- \(|2x+1-|3x+1||\leq x+2\)
- \(|x^2-|x^2+x||>11\)
- \(||2x^2-x|-3|\leq2x^2+x+5\)
- \(||x^3-x-1|-5|\geq x^3+x+8\)
- \(|\sqrt{x+2}-\sqrt{x+3}|\leq 1\)
Ответы
- (3,9; 4,1)
- \((-\infty; 3,8)\cup (4,2; +\infty) \)
- (-4; -2)
- \((-\infty; -4)\cup (-2;+\infty)\)
- (-2,5; -1,5)
- \((-\infty; -2,5)\cup (-1,5; +\infty)\)
- (2; 3)
- \((-\infty; 2)\cup (3;+\infty)\)
- \((4; +\infty)\)
- \((-0,5; +\infty)\)
- \((-\infty; 2,25)\)
- \((-\infty; 5/11)\)
- \((-\infty; 1)\)
- \((-\infty; -5/9)\)
- \((-\infty; 0)\)
- \((-\infty; -5]\cup [4;+\infty)\)
- \((-\infty; (-5-\sqrt{34})/3)\cup ((-5+\sqrt{34})/3; 1/3)\cup (3; +\infty)\)
- \((-\infty; -4)\cup (-3; (9-\sqrt{465})/6)\cup ((9+\sqrt{465})/6; +\infty)\)
- \((1/4; +\infty)\)
- \((-\infty; 3/17)\cup (9/13; +\infty)\)
- [-1; 1]
- (2;4)
- \([-1/2; +\infty)\)
- \((-\infty; 0]\cup [4/5; +\infty)\)
- \((-\infty; 1]\cup [2; +\infty)\)
- \((-\infty; +\infty)\)
- \((-\infty; 2,2)\cup (3; +\infty)\)
- \([(1-\sqrt{17})/2; 2]\)
- \((-\infty; (1-\sqrt{21})/2]\cup [(1+\sqrt{21})/2; +\infty)\)
- (-5/2; 2)
- (-1/3; 5/3)
- \((-\infty; -1]\cup [0; +\infty)\)
- \([-2/3; +\infty)\)
- \((-\infty; -11)\cup (11; +\infty)\)
- \([-4; +\infty)\)
- \((-\infty; -\sqrt[3]{6}]\)
- \([-2; +\infty)\)