Задачи по школьной математике. Дробно-рациональные неравенства

  1. \(\displaystyle\frac{3}{x}>\frac{1}{2}\)
  2. \(9x^2-x+9\geq 3x^2+18x-6\)
  3. \(\displaystyle\frac{(x+4)(3-x)}{2(x+1)}\geq 0\)
  4. \(\displaystyle\frac{1}{x+1}-\frac{2}{x^2-x+1}\leq\frac{1-2x}{x^3+1}\)
  5. \(\displaystyle\frac{(x^2+21-10x)(x^2-6x-7)}{(x^2+5x+6)(x^2-4)(x^2-x+1)}\leq 0\)
  6. \(\displaystyle\frac{10}{x^2-7x+12}+\frac{10}{x-4}\leq -1\)
  7. \(\displaystyle\frac{1}{x+1}<\frac{2+3x-x^2}{3+4x+x^2}\)
  8. \(\displaystyle\frac{25}{x^2-4x}\geq x^2-4x\)
  9. \((x^2-2x)(2x-2)-\displaystyle\frac{9(2x-2)}{x^2-2x}\leq 0\)
  10. \(x^2+(x+1)^2<\displaystyle\frac{15}{x^2+x+1}\)
  11. \(\displaystyle\frac{(x-2)(x-4)(x-7)}{(x+2)(x+4)(x+7)}>1\)
  12. \(x(x-4)(x-6)(x-2)<9\)
  13. \(1<\displaystyle\frac{3x^2-7x+8}{x^2+1}\leq 2\)
  14. \(\displaystyle\frac{1}{x^2+8x-9}\geq \frac{1}{3x^2-5x+2}\)
  15. \(x^2(101-4x^2)\le25\)
  16. \((x^2+2x)^2-3(x+1)^2+5<0\)

Комментариев 3 к “Задачи по школьной математике. Дробно-рациональные неравенства

  1. 1) (0; 6)
    2) (-беск; 3/2] U [5/3; +беск)
    3) (-беск; -4] U (-1; 3]
    4) (-беск; -1) U (-1; 2]
    5) (-3; -2)U(-2;-1]U(2;3)U{7}

  2. 6) [ (-3-корень(41))/2; (-3+корень(41))/2] U (3;4)
    7) (-3; -1)
    8) [-1;0)U(4;5]
    9) (-беск; -1]U(0;1]U(2;3]
    10) (-2; 1)
    11) (-беск; -7) U (-4; -2)
    12) (3-корень(10); 3) U (3; 3+корень(10))

  3. 13) [1;6]
    14) (-беск; -9)U(2/3; 1)U[11/2; +беск)
    15) (-беск; -5]U[-0,5;0,5]U[5;+беск)
    16) (-1-корень(3);-1-корень(2))U(-1+корень(2);-1+корень(3))

Комментарии закрыты