Условия задач
- \(2(x+4)-4(x-5)=-2(x+4)+10x\)
- \(\displaystyle\frac{5x-3}{4}-\frac{2x}{3}=x-\frac{1}{9}\)
- \(\displaystyle\frac{5+3x}{3+x}=\frac{1,75+x}{-0,75-x}\)
- \(\displaystyle\left(\frac{4}{8}+0,125-\frac{2}{12}\right)\cdot\left(12,8:\frac{160}{3}\right)+\frac{2}{16}\)
- \(\displaystyle\frac{(a^4b)^5\cdot (ab^{-2})^3}{(a^2b^5)^{-2}a^5b^2}\)
- \(\displaystyle\frac{x}{4}+\frac{x}{8}+\frac{2x}{3}+\frac{3x}{2}+\frac{4x}{12}+\frac{x}{21}=-2\)
- \((x-4)^2-(x-1)(x+3)=25-10x\)
- \(\displaystyle\frac{34}{5x}=4-\frac{14}{x}\)
- \((\sqrt{48}-\sqrt{16})(\sqrt{4}+\sqrt{12})-2\sqrt{6}(4-\sqrt{32}+4\sqrt{27})\)
- \(\left\{\begin{array}{l l} 4x-7y=-10,\\ 5y-10x=-15 \end{array}\right.\)
- \(\left\{\begin{array}{l l} 2x+3y=7,\\ 4y-9x=-14\end{array}\right.\)
- \(|5x-3|=14\)
- \(|3-7x|=|15+2x|\)
- \(|6x-6|=|6x^2-18x+12|\)
- \(\left\{\begin{array}{l l} 2x+3(1-4x)\geq 4,\\ 2-9x\geq -2+6(x-5(x-2))\end{array}\right.\)
- Найдите количество чисел от 1 до 200, которые при делении на 13 дают остаток 2 или 5.
- Найдите сумму составных чисел на промежутке [170; 190].