Справочник. Свойства тригонометрических функций

Свойства тригонометрических функций

\(\alpha\) 0 \(30^0\) \(45^0\) \(60^0\) \(90^0\) \(180^0\) \(270^0\) \(360^0\)
0 \(\displaystyle\frac{\pi}{6}\) \(\displaystyle\frac{\pi}{4}\) \(\displaystyle\frac{\pi}{3}\) \(\displaystyle\frac{\pi}{2}\) \(\pi\) \(\displaystyle\frac{3\pi}{2}\) \(2\pi\)
\(\sin\alpha\) 0 \(\displaystyle\frac{1}{2}\) \(\displaystyle\frac{\sqrt{2}}{2}\)  \(\displaystyle\frac{\sqrt{3}}{2}\)  1  0  -1  0
\(\cos\alpha\) 1  \(\displaystyle\frac{\sqrt{3}}{2}\)  \(\displaystyle\frac{\sqrt{2}}{2}\)  \(\displaystyle\frac{1}{2}\) 0  -1  0  1
tg \(\alpha\) 0 \(\displaystyle\frac{\sqrt{3}}{3}\) 1 \(\sqrt{3}\) \(\infty\)  0  \(\infty\)  0
ctg \(\alpha\) \(\infty\) \(\sqrt{3}\) 1 \(\displaystyle\frac{\sqrt{3}}{3}\) 0  \(\infty\)  0  \(\infty\)

\(\sin(-\alpha)=-\sin\alpha\)

\(\cos(-\alpha)=\cos\alpha\)

\(\mathrm{tg}(-\alpha)=-\mathrm{tg}\alpha\)

\(\mathrm{ctg}(-\alpha)=-\mathrm{ctg}\alpha\)