- \(\quad3x-1=4x+2\)
- \(\quad\displaystyle\frac{1}{x-3}-\frac{1}{x+6}=\frac{9}{x^2+3x-18}\)
- \(\quad x^4+7x^2-18=0\)
- \(\quad6x^2-7x+1=0\)
- \(\quad\) Найдите все значения переменной, при которых разность дробей \(\displaystyle\frac{x-3}{x-2}\) и \(\displaystyle\frac{3}{x+1}\) равна дроби \(\displaystyle\frac{3}{x^2-x-2}\).
- \(\quad\displaystyle\frac{x-1}{2}=\frac{2x+4}{3}\)
- \(\quad6x^2+x=0\)
- \(\quad\displaystyle\frac{x}{x+4}-\frac{2}{x-4}+\frac{16}{x^2-16}=0\)
- \(\quad1-\displaystyle\frac{3x^2-x-24}{3-x}=0\)
- \(\quad\displaystyle\frac{2x}{x^2-36}+\frac{5-x}{x-6}=0\)
- \(\quad(x+4)^2-(x-8)^2=32\)
- \(\quad(x^2-5x+2)(x^2-5x-4)=-9\)
- \(\quad\displaystyle\frac{5x-1}{3}-\frac{2x+3}{5}=1\)
- \(\quad x^4-8x^2-9=0\)
- \(\quad\displaystyle\frac{2x+5}{2}-\frac{x^2+10x}{10}=1\)
- \(\quad(x^2+3x)^2-14x^2-42x+40=0\)
- \(\quad(2x-3)(x+1)=x^2+9\)
- \(\quad\displaystyle\frac{2x-7}{x^2-9x+14}-\frac{1}{x-1}=\frac{1}{x^2-3x+2}\)
- \(\quad\displaystyle\frac{3}{x-2}+1=\frac{10}{x^2-4x+4}\)
- \(\quad\displaystyle\frac{x}{x+2}-\frac{6}{x-2}+\frac{24}{x^2-4}=0\)
- \(\quad\displaystyle\frac{x+2}{x-1}+\frac{x+3}{x+1}=\frac{x+5}{x^2-1}\)
- \(\quad\displaystyle\frac{5}{6+x-x^2}-1=\frac{1}{x+2}\)
- \(\quad\) Пусть \(x_1\) и \(x_2\) – корни уравнения \(x^2+13x-15=0\). Найдите значение выражения \(\displaystyle\frac{x^2_1+x^2_2}{4x_1x_2}\)
Ответы
- -3
- \((-\infty;-6)\cup(-6;3)\cup(3;+\infty)\)
- \(\pm\sqrt{2}\)
- 1/6;1
- 0;5
- -11
- -1/6;0
- 2
- -3
- -5
- 10/3
- \((5\pm\sqrt{29})/2\)
- 29/19
- -3;3
- \(\pm\sqrt{15}\)
- -5;-4;1;2
- -3;4
- 0
- -3;4
- 6
- -3
- 2
- -199/60